Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(23)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37934865

ABSTRACT

Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq) in profiling mouse autoantibodies. This library was validated using 7 genetically distinct mouse lines across a spectrum of autoreactivity. Mice deficient in antibody production (Rag2-/- and µMT) were used to model nonspecific peptide enrichments, while cross-reactivity was evaluated using anti-ovalbumin B cell receptor-restricted OB1 mice as a proof of principle. The PhIP-seq approach was then utilized to interrogate 3 distinct autoimmune disease models. First, serum from Lyn-/- IgD+/- mice with lupus-like disease was used to identify nuclear and apoptotic bleb reactivities. Second, serum from nonobese diabetic (NOD) mice, a polygenic model of pancreas-specific autoimmunity, was enriched in peptides derived from both insulin and predicted pancreatic proteins. Lastly, Aire-/- mouse sera were used to identify numerous autoantigens, many of which were also observed in previous studies of humans with autoimmune polyendocrinopathy syndrome type 1 carrying recessive mutations in AIRE. These experiments support the use of murine proteome-wide PhIP-seq for antigenic profiling and autoantibody discovery, which may be employed to study a range of immune perturbations in mouse models of autoimmunity profiling.


Subject(s)
Autoantibodies , Bacteriophages , Humans , Animals , Mice , Proteome , Autoimmunity , Peptides , Mice, Inbred NOD
2.
Nature ; 623(7988): 803-813, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938781

ABSTRACT

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Subject(s)
Autoantibodies , Genetic Predisposition to Disease , Interferon Type I , NF-kappa B , Humans , Autoantibodies/immunology , COVID-19/genetics , COVID-19/immunology , Gain of Function Mutation , Heterozygote , I-kappa B Proteins/deficiency , I-kappa B Proteins/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Loss of Function Mutation , NF-kappa B/deficiency , NF-kappa B/genetics , NF-kappa B p52 Subunit/deficiency , NF-kappa B p52 Subunit/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Thymus Gland/abnormalities , Thymus Gland/immunology , Thymus Gland/pathology , Thyroid Epithelial Cells/metabolism , Thyroid Epithelial Cells/pathology , AIRE Protein , NF-kappaB-Inducing Kinase
3.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37066405

ABSTRACT

Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq), to profile mouse autoantibodies. This system and library were validated using seven genetic mouse models across a spectrum of autoreactivity. Mice deficient in antibody production (Rag2-/- and µMT) were used to model non-specific peptide enrichments, while cross-reactivity was evaluated using anti-ovalbumin B cell receptor (BCR)-restricted OB1 mice as a proof of principle. The PhIP-seq approach was then utilized to interrogate three distinct autoimmune disease models. First, serum from Lyn-/- IgD+/- mice with lupus-like disease was used to identify nuclear and apoptotic bleb reactivities, lending support to the hypothesis that apoptosis is a shared origin of these antigens. Second, serum from non-obese diabetic (NOD) mice, a polygenic model of pancreas-specific autoimmunity, enriched peptides derived from both insulin and predicted pancreatic proteins. Lastly, Aire-/- mouse sera were used to identify numerous auto-antigens, many of which were also observed in previous studies of humans with autoimmune polyendocrinopathy syndrome type 1 (APS1) carrying recessive mutations in AIRE. Among these were peptides derived from Perilipin-1, a validated autoimmune biomarker of generalized acquired lipodystrophy in humans. Autoreactivity to Perilipin-1 correlated with lymphocyte infiltration in adipose tissue and underscores the approach in revealing previously unknown specificities. These experiments support the use of murine proteome-wide PhIP-seq for antigenic profiling and autoantibody discovery, which may be employed to study a range of immune perturbations in mouse models of autoimmunity.

4.
medRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38196603

ABSTRACT

The prevalence and burden of autoimmune and autoantibody mediated disease is increasing worldwide, yet most disease etiologies remain unclear. Despite numerous new targeted immunomodulatory therapies, comprehensive approaches to apply and evaluate the effects of these treatments longitudinally are lacking. Here, we leverage advances in programmable-phage immunoprecipitation (PhIP-Seq) methodology to explore the modulation, or lack thereof, of proteome-wide autoantibody profiles in both health and disease. We demonstrate that each individual, regardless of disease state, possesses a distinct set of autoreactivities constituting a unique immunological fingerprint, or "autoreactome", that is remarkably stable over years. In addition to uncovering important new biology, the autoreactome can be used to better evaluate the relative effectiveness of various therapies in altering autoantibody repertoires. We find that therapies targeting B-Cell Maturation Antigen (BCMA) profoundly alter an individual's autoreactome, while anti-CD19 and CD-20 therapies have minimal effects, strongly suggesting a rationale for BCMA or other plasma cell targeted therapies in autoantibody mediated diseases.

5.
Cell Rep Med ; 3(8): 100713, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35932762

ABSTRACT

Maternal asthma status, prenatal exposures, and infant gut microbiota perturbation are associated with heightened risk of atopy and asthma risk in childhood, observations hypothetically linked by intergenerational microbial transmission. Using maternal vaginal (n = 184) and paired infant stool (n = 172) samples, we identify four compositionally and functionally distinct Lactobacillus-dominated vaginal microbiota clusters (VCs) that relate to prenatal maternal health and exposures and infant serum immunoglobulin E (IgE) status at 1 year. Variance in bacteria shared between mother and infant pairs relate to VCs, maternal allergy/asthma status, and infant IgE levels. Heritable bacterial gene pathways associated with infant IgE include fatty acid synthesis and histamine and tryptophan degradation. In vitro, vertically transmitted Lactobacillus jensenii strains induce immunosuppressive phenotypes on human antigen-presenting cells. Murine supplementation with L. jensenii reduces lung eosinophils, neutrophilic expansion, and the proportion of interleukin-4 (IL-4)+ CD4+ T cells. Thus, bacterial and atopy heritability are intimately linked, suggesting a microbial component of intergenerational disease transmission.


Subject(s)
Asthma , Gastrointestinal Microbiome , Hypersensitivity, Immediate , Animals , Asthma/genetics , Bacteria/genetics , Female , Gastrointestinal Microbiome/genetics , Humans , Immune Tolerance/genetics , Immunoglobulin E , Infant , Mice , Pregnancy
6.
mBio ; 13(3): e0020522, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35502904

ABSTRACT

Lymphocytic choriomeningitis virus (LCMV) is a well-studied mammarenavirus that can be fatal in congenital infections. However, our understanding of LCMV and its interactions with human host factors remains incomplete. Here, host determinants affecting LCMV infection were investigated through a genome-wide CRISPR knockout screen in A549 cells, a human lung adenocarcinoma line. We identified and validated a variety of novel host factors that play a functional role in LCMV infection. Among these, knockout of the sialomucin CD164, a heavily glycosylated transmembrane protein, was found to ablate infection with multiple LCMV strains but not other hemorrhagic mammarenaviruses in several cell types. Further characterization revealed a dependency of LCMV entry on the cysteine-rich domain of CD164, including an N-linked glycosylation site at residue 104 in that region. Given the documented role of LCMV with respect to transplacental human infections, CD164 expression was investigated in human placental tissue and placental cell lines. CD164 was found to be highly expressed in the cytotrophoblast cells, an initial contact site for pathogens within the placenta, and LCMV infection in placental cells was effectively blocked using a monoclonal antibody specific to the cysteine-rich domain of CD164. Together, this study identifies novel factors associated with LCMV infection of human tissues and highlights the importance of CD164, a sialomucin that previously had not been associated with viral infection. IMPORTANCE Lymphocytic choriomeningitis virus (LCMV) is a human-pathogenic mammarenavirus that can be fatal in congenital infections. Although frequently used in the study of persistent infections in the field of immunology, aspects of this virus's life cycle remain incomplete. For example, while viral entry has been shown to depend on a cell adhesion molecule, DAG1, genetic knockout of this gene allows for residual viral infection, implying that additional receptors can mediate cell entry. The significance of our study is the identification of host factors important for successful infection, including the sialomucin CD164, which had not been previously associated with viral infection. We demonstrated that CD164 is essential for LCMV entry into human cells and can serve as a possible therapeutic target for treatment of congenital infection.


Subject(s)
Endolyn , Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus , Cysteine , Endolyn/genetics , Female , Humans , Lymphocytic Choriomeningitis/pathology , Lymphocytic choriomeningitis virus/pathogenicity , Placenta/virology , Pregnancy , Sialomucins
7.
Res Sq ; 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-34013247

ABSTRACT

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing (scRNA-seq) we assessed lower respiratory tract immune responses and microbiome dynamics in 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill uninfected controls. Two days before VAP onset we observed a transcriptional signature of bacterial infection. Two weeks prior to VAP onset, following intubation, we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.

8.
medRxiv ; 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-33791731

ABSTRACT

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing we assessed lower respiratory tract immune responses and microbiome dynamics in 23 COVID-19 patients, 10 of whom developed VAP, and eight critically ill uninfected controls. At a median of three days (range: 2-4 days) before VAP onset we observed a transcriptional signature of bacterial infection. At a median of 15 days prior to VAP onset (range: 8-38 days), we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.

10.
Front Immunol ; 11: 588, 2020.
Article in English | MEDLINE | ID: mdl-32328065

ABSTRACT

The developing human fetus generates both tolerogenic and protective immune responses in response to the unique requirements of gestation. Thus, a successful human pregnancy depends on a fine balance between two opposing immunological forces: the semi-allogeneic fetus learns to tolerate both self- and maternal- antigens and, in parallel, develops protective immunity in preparation for birth. This critical window of immune development bridges prenatal immune tolerance with the need for postnatal environmental protection, resulting in a vulnerable neonatal period with heightened risk of infection. The fetal immune system is highly specialized to mediate this transition and thus serves a different function from that of the adult. Adaptive immune memory is already evident in the fetal intestine. Fetal T cells with pro-inflammatory potential are born in a tolerogenic environment and are tightly controlled by both cell-intrinsic and -extrinsic mechanisms, suggesting that compartmentalization and specialization, rather than immaturity, define the fetal immune system. Dysregulation of fetal tolerance generates an inflammatory response with deleterious effects to the pregnancy. This review aims to discuss the recent advances in our understanding of the cellular and molecular composition of fetal adaptive immunity and the mechanisms that govern T cell development and function. We also discuss the tolerance promoting environment that impacts fetal immunity and the consequences of its breakdown. A greater understanding of fetal mechanisms of immune activation and regulation has the potential to uncover novel paradigms of immune balance which may be leveraged to develop therapies for transplantation, autoimmune disease, and birth-associated inflammatory pathologies.


Subject(s)
Adaptive Immunity/immunology , Fetus/immunology , Immune Tolerance/immunology , T-Lymphocytes/immunology , Female , Humans , Pregnancy
11.
J Clin Invest ; 129(9): 3562-3577, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31145102

ABSTRACT

BACKGROUND: While the human fetal immune system defaults to a program of tolerance, there is concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown. METHODS: We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with pro-inflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared to healthy term controls. RESULTS: We identified a transcriptionally distinct population of CD4+ T cells characterized by expression of the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF). PLZF+ CD4+ T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced pro-inflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFNγ in a fetal-specific manner. IFNγ-producing PLZF+ CD4+ T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation. CONCLUSION: Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies.


Subject(s)
Gene Expression Regulation, Developmental , Immune System , Intestines/embryology , Lymphoid Tissue/embryology , Mucous Membrane/embryology , NK Cell Lectin-Like Receptor Subfamily B/metabolism , T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/cytology , Case-Control Studies , Female , Fetal Blood/cytology , Fetus/immunology , Gene Expression Regulation , Humans , Immunologic Memory , Immunosuppression Therapy , Infant, Newborn , Inflammation , Interferon-gamma/metabolism , Intestines/immunology , Leukocytes, Mononuclear/cytology , Lymphocyte Activation , Phenotype , Pregnancy , Promyelocytic Leukemia Zinc Finger Protein/metabolism , T-Lymphocytes/metabolism
13.
Sci Rep ; 7(1): 11326, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900103

ABSTRACT

Escherichia coli is a commensal or pathogenic bacterium that can survive in diverse environments. Adhesion to surfaces is essential for E. coli colonization, and thus it is important to understand the molecular mechanisms that promote this process in different niches. Autotransporter proteins are a class of cell-surface factor used by E. coli for adherence. Here we characterized the regulation and function of YeeJ, a poorly studied but widespread representative from an emerging class of autotransporter proteins, the inverse autotransporters (IAT). We showed that the yeeJ gene is present in ~40% of 96 completely sequenced E. coli genomes and that YeeJ exists as two length variants, albeit with no detectable functional differences. We demonstrated that YeeJ promotes biofilm formation in different settings through exposition at the cell-surface. We also showed that YeeJ contains a LysM domain that interacts with peptidoglycan and thus assists its localization into the outer membrane. Additionally, we identified the Polynucleotide Phosphorylase PNPase as a repressor of yeeJ transcription. Overall, our work provides new insight into YeeJ as a member of the recently defined IAT class, and contributes to our understanding of how commensal and pathogenic E. coli colonise their environments.


Subject(s)
Biofilms , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Peptidoglycan/metabolism , Type V Secretion Systems/metabolism , Biofilms/growth & development , Cell Membrane/metabolism , Cloning, Molecular , Computational Biology/methods , Conserved Sequence , Escherichia coli Proteins/genetics , Evolution, Molecular , Gene Expression , Gene Expression Regulation, Bacterial , Gene Order , Genome, Bacterial , Phenotype , Polyribonucleotide Nucleotidyltransferase/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Type V Secretion Systems/genetics
14.
Nat Med ; 22(10): 1187-1191, 2016 10.
Article in English | MEDLINE | ID: mdl-27618652

ABSTRACT

Gut microbiota bacterial depletions and altered metabolic activity at 3 months are implicated in childhood atopy and asthma. We hypothesized that compositionally distinct human neonatal gut microbiota (NGM) exist, and are differentially related to relative risk (RR) of childhood atopy and asthma. Using stool samples (n = 298; aged 1-11 months) from a US birth cohort and 16S rRNA sequencing, neonates (median age, 35 d) were divisible into three microbiota composition states (NGM1-3). Each incurred a substantially different RR for multisensitized atopy at age 2 years and doctor-diagnosed asthma at age 4 years. The highest risk group, labeled NGM3, showed lower relative abundance of certain bacteria (for example, Bifidobacterium, Akkermansia and Faecalibacterium), higher relative abundance of particular fungi (Candida and Rhodotorula) and a distinct fecal metabolome enriched for pro-inflammatory metabolites. Ex vivo culture of human adult peripheral T cells with sterile fecal water from NGM3 subjects increased the proportion of CD4+ cells producing interleukin (IL)-4 and reduced the relative abundance of CD4+CD25+FOXP3+ cells. 12,13-DiHOME, enriched in NGM3 versus lower-risk NGM states, recapitulated the effect of NGM3 fecal water on relative CD4+CD25+FOXP3+ cell abundance. These findings suggest that neonatal gut microbiome dysbiosis might promote CD4+ T cell dysfunction associated with childhood atopy.


Subject(s)
Asthma/epidemiology , CD4-Positive T-Lymphocytes/immunology , Gastrointestinal Microbiome/genetics , Hypersensitivity/epidemiology , RNA, Ribosomal, 16S/genetics , Asthma/immunology , Bifidobacterium/genetics , CD4-Positive T-Lymphocytes/metabolism , Candida/genetics , Cell Differentiation/immunology , Child, Preschool , Faecalibacterium/genetics , Feces/chemistry , Female , Forkhead Transcription Factors/metabolism , Gastrointestinal Microbiome/immunology , Humans , Hypersensitivity/immunology , Infant , Infant, Newborn , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-4/immunology , Male , Odds Ratio , Rhodotorula/genetics , Sequence Analysis, RNA , T-Lymphocytes/immunology
15.
PLoS One ; 8(7): e68706, 2013.
Article in English | MEDLINE | ID: mdl-23844234

ABSTRACT

BACKGROUND: Removing spores of Clostridium difficile and Bacillus anthracis from skin is challenging because they are resistant to commonly used antimicrobials and soap and water washing provides only modest efficacy. We hypothesized that hygiene interventions incorporating a sporicidal electrochemically generated hypochlorous acid solution (Vashe(®)) would reduce the burden of spores on skin. METHODS: Hands of volunteers were inoculated with non-toxigenic C. difficile spores or B. anthracis spore surrogates to assess the effectiveness of Vashe solution for reducing spores on skin. Reduction in spores was compared for Vashe hygiene interventions versus soap and water (control). To determine the effectiveness of Vashe solution for removal of C. difficile spores from the skin of patients with C. difficile infection (CDI), reductions in levels of spores on skin were compared for soap and water versus Vashe bed baths. RESULTS: Spore removal from hands was enhanced with Vashe soak (>2.5 log10 reduction) versus soap and water wash or soak (~2.0 log10 reduction; P<0.05) and Vashe wipes versus alcohol wipes (P<0.01). A combined approach of soap and water wash followed by soaking in Vashe removed >3.5 log10 spores from hands (P<0.01 compared to washing or soaking alone). Bed baths using soap and water (N =26 patients) did not reduce the percentage of positive skin cultures for CDI patients (64% before versus 57% after bathing; P =0.5), whereas bathing with Vashe solution (N =21 patients) significantly reduced skin contamination (54% before versus 8% after bathing; P =0.0001). Vashe was well-tolerated with no evidence of adverse effects on skin. CONCLUSIONS: Vashe was safe and effective for reducing the burden of B. anthracis surrogates and C. difficile spores on hands. Bed baths with Vashe were effective for reducing C. difficile on skin. These findings suggest a novel strategy to reduce the burden of spores on skin.


Subject(s)
Bacillus anthracis/isolation & purification , Clostridioides difficile/isolation & purification , Hypochlorous Acid/pharmacology , Skin/drug effects , Spores, Bacterial/isolation & purification , Baths , Cross-Over Studies , Enterocolitis, Pseudomembranous/diagnosis , Enterocolitis, Pseudomembranous/microbiology , Enterocolitis, Pseudomembranous/prevention & control , Hand/microbiology , Hand Disinfection/methods , Humans , Hygiene , Male , Oxidants/pharmacology , Skin/microbiology , Soaps , Solutions , Treatment Outcome , Water
16.
Article in English | MEDLINE | ID: mdl-23565326

ABSTRACT

The primary goal of the human microbiome initiative has been to increase our understanding of the structure and function of our indigenous microbiota and their effects on human health and predisposition to disease. Because of its clinical importance and accessibility for in vivo study, the oral biofilm is one of the best-understood microbial communities associated with the human body. Studies have shown that there is a succession of select microbial interactions that directs the maturation of a defined community structure, generating the formation of dental plaque. Although the initiating factors that lead to disease development are not clearly defined, in many individuals there is a fundamental shift from a health-associated biofilm community to one that is pathogenic in nature and a central player in the pathogenic potential of this community is the presence of Porphyromonas gingivalis. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions, which is attributed to its arsenal of specialized virulence factors. Hence, this organism is regarded as a primary etiologic agent of periodontal disease progression. In this review, we summarize some of the latest information regarding what is known about its role in periodontitis, including pathogenic potential as well as ecological and nutritional parameters that may shift this commensal to a virulent state. We also discuss parallels between the development of pathogenic biofilms and the human cellular communities that lead to cancer, specifically we frame our viewpoint in the context of 'wounds that fail to heal'.

SELECTION OF CITATIONS
SEARCH DETAIL
...